add run_model.py

This commit is contained in:
Yuki-Kokomi
2024-11-06 17:35:42 +08:00
committed by GitHub
parent 48f628e978
commit 0b09f51a72

190
run_model.py Normal file
View File

@@ -0,0 +1,190 @@
from tinyllava.eval.run_tiny_llava import *
import argparse
parser.add_argument('--model_path', type=str, required=True, help="Path to the model.")
parser.add_argument('--src', type=str, required=True, help="Path of Input Pictures and Reference Codes.")
parser.add_argument('--out', type=str, required=True, help="Any output path you like.")
# 解析命令行参数
args = parser.parse_args()
# 将命令行输入的值传递给相应的变量
model_path = args.model_path
src_base = args.src
out_base = args.out
input_types = ["Default"]#["Default", "Transparent", "Orthographic"]
conv_mode = "gemma" # or llama, gemma, phi
## You need to change the "max_new_tokens" if the model can't deal with long tokens.
## possible values: 1024, 1152, 1536, 2048, 3072
args = type('Args', (), {
"model_path": model_path,
"model_base": None,
"conv_mode": conv_mode,
"sep": ",",
"temperature": 0,
"top_p": None,
"num_beams": 1,
"max_new_tokens": 2048
})()
# Model
disable_torch_init()
if args.model_path is not None:
model, tokenizer, image_processor, context_len = load_pretrained_model(args.model_path)
else:
assert args.model is not None, 'model_path or model must be provided'
model = args.model
if hasattr(model.config, "max_sequence_length"):
context_len = model.config.max_sequence_length
else:
context_len = 2048
tokenizer = model.tokenizer
image_processor = model.vision_tower._image_processor
text_processor = TextPreprocess(tokenizer, args.conv_mode)
data_args = model.config
image_processor = ImagePreprocess(image_processor, data_args)
model.cuda()
import os
def ensure_dir(path):
"""
create path by first checking its existence,
:param paths: path
:return:
"""
if not os.path.exists(path):
os.makedirs(path)
import signal
class TimeoutException(Exception):
pass
def handler(signum, frame):
raise TimeoutException()
# Set timeout (unit: s)
timeout = 300
def timeout_decorator(func):
def wrapper(*args, **kwargs):
signal.signal(signal.SIGALRM, handler)
signal.alarm(timeout)
try:
result = func(*args, **kwargs)
except TimeoutException:
print("Function timed out!")
raise TimeoutException
result = None
finally:
signal.alarm(0)
return result
return wrapper
@timeout_decorator
def process_image(qs, path):
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
msg = Message()
msg.add_message(qs)
result = text_processor(msg.messages, mode='eval')
input_ids = result['input_ids']
prompt = result['prompt']
input_ids = input_ids.unsqueeze(0).cuda()
image_files = [path]
images = load_images(image_files)[0]
images_tensor = image_processor(images)
images_tensor = images_tensor.unsqueeze(0).half().cuda()
stop_str = text_processor.template.separator.apply()[1]
keywords = [stop_str]
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
with torch.inference_mode():
output_ids = model.generate(
input_ids,
images=images_tensor,
do_sample=True if args.temperature > 0 else False,
temperature=args.temperature,
top_p=args.top_p,
num_beams=args.num_beams,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=args.max_new_tokens,
use_cache=True,
stopping_criteria=[stopping_criteria],
)
outputs = tokenizer.batch_decode(
output_ids, skip_special_tokens=True
)[0]
outputs = outputs.strip()
if outputs.endswith(stop_str):
outputs = outputs[: -len(stop_str)]
outputs = outputs.strip()
return outputs
import re
def extract_python_code(input_str):
# 匹配以```python开头```结束的内容
match = re.search(r'```python(.*?)```', input_str, re.DOTALL)
if match:
# 如果找到匹配的内容,返回```python和```之间的内容
return match.group(1)
else:
# 如果没有```python```包裹的内容,返回```python后面的所有内容
# 找到```python的位置并返回从该位置到字符串末尾的所有内容
match = re.search(r'```python(.*)', input_str, re.DOTALL)
if match:
return match.group(1)
else:
return input_str
import os
import glob
import traceback
errors = []
for index in range(len(input_types)):
cur_type = input_types[index]
src = src_base + cur_type
out = out_base + cur_type
ensure_dir(out)
out_paths = sorted(glob.glob(os.path.join(src, "*.{}".format("jpg"))))
if cur_type == "Orthographic" :
qs = "This image is 4 views of a 3D model from certain angles. Please try to use Python-style APIs to render this model."
else:
qs = "This image is a view of a 3D model from a certain angle. Please try to use Python-style APIs to render this model."
for i in range(len(out_paths)):
path = out_paths[i]
print(f"{cur_type}: {i + 1}/{len(out_paths)}", end='\r')
name = path.split("/")[-1].split(".")[0]
save_path = os.path.join(out, f'{name}.py')
if os.path.isfile(save_path): continue
try:
outputs = process_image(qs, path)
outputs = extract_python_code(outputs)
with open(save_path, 'w', encoding='utf-8') as file:
file.write(outputs)
file.close()
except:
errors.append(f"{cur_type}: {name}")
print(f"gen error: {name}")
traceback.print_exc()
print()
print("Can't Generate these inputs:")
print(errors)