mirror of
https://github.com/Yuki-Kokomi/OpenECAD_Project.git
synced 2026-02-03 16:23:24 -05:00
191 lines
5.9 KiB
Python
191 lines
5.9 KiB
Python
from tinyllava.eval.run_tiny_llava import *
|
||
import argparse
|
||
|
||
parser = argparse.ArgumentParser()
|
||
parser.add_argument('--model_path', type=str, required=True, help="Path to the model.")
|
||
parser.add_argument('--src', type=str, required=True, help="Path of Input Pictures and Reference Codes.")
|
||
parser.add_argument('--out', type=str, required=True, help="Any output path you like.")
|
||
|
||
# 解析命令行参数
|
||
args = parser.parse_args()
|
||
|
||
# 将命令行输入的值传递给相应的变量
|
||
model_path = args.model_path
|
||
src_base = args.src
|
||
out_base = args.out
|
||
|
||
input_types = ["Default"]#["Default", "Transparent", "Orthographic"]
|
||
conv_mode = "gemma" # or llama, gemma, phi
|
||
|
||
## You need to change the "max_new_tokens" if the model can't deal with long tokens.
|
||
## possible values: 1024, 1152, 1536, 2048, 3072
|
||
args = type('Args', (), {
|
||
"model_path": model_path,
|
||
"model_base": None,
|
||
"conv_mode": conv_mode,
|
||
"sep": ",",
|
||
"temperature": 0,
|
||
"top_p": None,
|
||
"num_beams": 1,
|
||
"max_new_tokens": 2048
|
||
})()
|
||
|
||
# Model
|
||
disable_torch_init()
|
||
|
||
if args.model_path is not None:
|
||
model, tokenizer, image_processor, context_len = load_pretrained_model(args.model_path)
|
||
else:
|
||
assert args.model is not None, 'model_path or model must be provided'
|
||
model = args.model
|
||
if hasattr(model.config, "max_sequence_length"):
|
||
context_len = model.config.max_sequence_length
|
||
else:
|
||
context_len = 2048
|
||
tokenizer = model.tokenizer
|
||
image_processor = model.vision_tower._image_processor
|
||
|
||
|
||
text_processor = TextPreprocess(tokenizer, args.conv_mode)
|
||
data_args = model.config
|
||
image_processor = ImagePreprocess(image_processor, data_args)
|
||
model.cuda()
|
||
|
||
import os
|
||
|
||
def ensure_dir(path):
|
||
"""
|
||
create path by first checking its existence,
|
||
:param paths: path
|
||
:return:
|
||
"""
|
||
if not os.path.exists(path):
|
||
os.makedirs(path)
|
||
|
||
|
||
import signal
|
||
|
||
class TimeoutException(Exception):
|
||
pass
|
||
|
||
def handler(signum, frame):
|
||
raise TimeoutException()
|
||
|
||
# Set timeout (unit: s)
|
||
timeout = 300
|
||
|
||
def timeout_decorator(func):
|
||
def wrapper(*args, **kwargs):
|
||
signal.signal(signal.SIGALRM, handler)
|
||
signal.alarm(timeout)
|
||
try:
|
||
result = func(*args, **kwargs)
|
||
except TimeoutException:
|
||
print("Function timed out!")
|
||
raise TimeoutException
|
||
result = None
|
||
finally:
|
||
signal.alarm(0)
|
||
return result
|
||
return wrapper
|
||
|
||
@timeout_decorator
|
||
def process_image(qs, path):
|
||
qs = DEFAULT_IMAGE_TOKEN + "\n" + qs
|
||
|
||
|
||
msg = Message()
|
||
msg.add_message(qs)
|
||
|
||
result = text_processor(msg.messages, mode='eval')
|
||
input_ids = result['input_ids']
|
||
prompt = result['prompt']
|
||
input_ids = input_ids.unsqueeze(0).cuda()
|
||
|
||
|
||
image_files = [path]
|
||
images = load_images(image_files)[0]
|
||
images_tensor = image_processor(images)
|
||
images_tensor = images_tensor.unsqueeze(0).half().cuda()
|
||
|
||
stop_str = text_processor.template.separator.apply()[1]
|
||
keywords = [stop_str]
|
||
stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids)
|
||
|
||
with torch.inference_mode():
|
||
output_ids = model.generate(
|
||
input_ids,
|
||
images=images_tensor,
|
||
do_sample=True if args.temperature > 0 else False,
|
||
temperature=args.temperature,
|
||
top_p=args.top_p,
|
||
num_beams=args.num_beams,
|
||
pad_token_id=tokenizer.pad_token_id,
|
||
max_new_tokens=args.max_new_tokens,
|
||
use_cache=True,
|
||
stopping_criteria=[stopping_criteria],
|
||
)
|
||
|
||
outputs = tokenizer.batch_decode(
|
||
output_ids, skip_special_tokens=True
|
||
)[0]
|
||
outputs = outputs.strip()
|
||
if outputs.endswith(stop_str):
|
||
outputs = outputs[: -len(stop_str)]
|
||
outputs = outputs.strip()
|
||
return outputs
|
||
|
||
import re
|
||
|
||
def extract_python_code(input_str):
|
||
# 匹配以```python开头,```结束的内容
|
||
match = re.search(r'```python(.*?)```', input_str, re.DOTALL)
|
||
|
||
if match:
|
||
# 如果找到匹配的内容,返回```python和```之间的内容
|
||
return match.group(1)
|
||
else:
|
||
# 如果没有```python```包裹的内容,返回```python后面的所有内容
|
||
# 找到```python的位置并返回从该位置到字符串末尾的所有内容
|
||
match = re.search(r'```python(.*)', input_str, re.DOTALL)
|
||
if match:
|
||
return match.group(1)
|
||
else:
|
||
return input_str
|
||
|
||
import os
|
||
import glob
|
||
import traceback
|
||
errors = []
|
||
for index in range(len(input_types)):
|
||
cur_type = input_types[index]
|
||
src = os.path.join(src_base, cur_type)
|
||
out = os.path.join(out_base, cur_type)
|
||
ensure_dir(out)
|
||
out_paths = sorted(glob.glob(os.path.join(src, "*.{}".format("jpg"))))
|
||
if cur_type == "Orthographic" :
|
||
qs = "This image is 4 views of a 3D model from certain angles. Please try to use Python-style APIs to render this model."
|
||
else:
|
||
qs = "This image is a view of a 3D model from a certain angle. Please try to use Python-style APIs to render this model."
|
||
|
||
for i in range(len(out_paths)):
|
||
path = out_paths[i]
|
||
print(f"{cur_type}: {i + 1}/{len(out_paths)}", end='\r')
|
||
name = path.split("/")[-1].split(".")[0]
|
||
save_path = os.path.join(out, f'{name}.py')
|
||
if os.path.isfile(save_path): continue
|
||
try:
|
||
outputs = process_image(qs, path)
|
||
outputs = extract_python_code(outputs)
|
||
with open(save_path, 'w', encoding='utf-8') as file:
|
||
file.write(outputs)
|
||
file.close()
|
||
except:
|
||
errors.append(f"{cur_type}: {name}")
|
||
print(f"gen error: {name}")
|
||
traceback.print_exc()
|
||
print()
|
||
|
||
print("Can't Generate these inputs:")
|
||
print(errors)
|