first commit

This commit is contained in:
Yuki-Kokomi
2024-08-07 10:07:38 +08:00
committed by GitHub
commit 7b6e0703c2
15 changed files with 2069 additions and 0 deletions

367
lib/math_utils.py Normal file
View File

@@ -0,0 +1,367 @@
import math
import numpy as np
def rads_to_degs(rads):
"""Convert an angle from radians to degrees"""
return 180 * rads / math.pi
def distance_of_point_and_plane(origin, x_axis, y_axis, point):
# 确保输入是 numpy 数组
origin = np.array(origin)
x_axis = np.array(x_axis)
y_axis = np.array(y_axis)
point = np.array(point)
normal_vector = np.cross(x_axis, y_axis)
distance = np.dot(point - origin, normal_vector)
return np.abs(distance)
def is_point_on_plane(origin, x_axis, y_axis, point, tolerance=1e-10):
"""
判断一个3D点是否在给定的平面上
参数:
origin - 平面的原点坐标,形状为 (3,)
x_axis - 平面X轴的方向向量形状为 (3,)
y_axis - 平面Y轴的方向向量形状为 (3,)
point - 要检查的3D点形状为 (3,)
tolerance - 容忍度,默认值为 1e-10
返回:
如果点在平面上返回 True否则返回 False
"""
# 确保输入是 numpy 数组
origin = np.array(origin)
x_axis = np.array(x_axis)
y_axis = np.array(y_axis)
point = np.array(point)
# 计算法向量
normal_vector = np.cross(x_axis, y_axis)
# 计算点到平面的距离
distance = np.dot(point - origin, normal_vector)
# 判断距离是否在容忍度范围内
return np.abs(distance) < tolerance
def number_to_pi_string(number):
"""
将数字转换为带有 np.pi 的字符串表示形式
参数:
number - 输入数字,可以是 np.pi 的倍数
返回:
带有 np.pi 的字符串表示形式
"""
# 定义一个容忍度来比较浮点数
tolerance = 1e-10
# 预定义一些常见的 π 的倍数及其对应的字符串表示
pi_factors = {
np.pi: 'np.pi',
np.pi / 2: 'np.pi/2',
np.pi / 3: 'np.pi/3',
np.pi / 4: 'np.pi/4',
np.pi / 6: 'np.pi/6',
2 * np.pi: '2*np.pi',
3 * np.pi / 2: '3*np.pi/2',
3 * np.pi / 4: '3*np.pi/4',
5 * np.pi / 6: '5*np.pi/6',
5 * np.pi / 3: '5*np.pi/3',
7 * np.pi / 6: '7*np.pi/6',
4 * np.pi / 3: '4*np.pi/3',
}
# 检查输入数字是否接近这些常见的 π 倍数
for key, value in pi_factors.items():
if np.abs(np.abs(number) - key) < tolerance:
return value if number > 0 else '-' + value
# 如果数字不在预定义的 π 倍数中,返回原数字
return str(number.round(6))
def are_parallel(v1, v2, tol=1e-10):
# 计算叉积
cross_product = np.cross(v1, v2)
# 判断叉积是否接近于零向量
return np.all(np.abs(cross_product) < tol)
def find_circle_center_and_radius(start_point, end_point, mid_point):
# Calculate midpoints of the chords
mid_point_start_end = (start_point + end_point) / 2
mid_point_start_mid = (start_point + mid_point) / 2
# Calculate direction vectors of the chords
direction_start_end = end_point - start_point
direction_start_mid = mid_point - start_point
# Calculate perpendicular direction vectors
perp_start_end = np.array([-direction_start_end[1], direction_start_end[0]])
perp_start_mid = np.array([-direction_start_mid[1], direction_start_mid[0]])
# Solve for the intersection of the perpendicular bisectors
A = np.array([perp_start_end, -perp_start_mid]).T
b = mid_point_start_mid - mid_point_start_end
# Solve the linear system
t, s = np.linalg.solve(A, b)
# Calculate the center
center = mid_point_start_end + t * perp_start_end
# Calculate the radius
radius = np.linalg.norm(center - start_point)
return center, radius
def rotate_vector(vector, axis, angle):
"""
将一个3D向量绕指定轴逆时针旋转给定角度
参数:
vector - 要旋转的3D向量形状为 (3,)
axis - 旋转轴,形状为 (3,)
angle - 旋转角度(弧度)
返回:
旋转后的3D向量形状为 (3,)
"""
# 确保输入是 numpy 数组
vector = np.array(vector)
axis = np.array(axis)
# 计算单位轴向量
axis = axis / np.linalg.norm(axis)
# 计算旋转矩阵的各个分量
cos_theta = np.cos(angle)
sin_theta = np.sin(angle)
cross_product = np.cross(axis, vector)
dot_product = np.dot(axis, vector)
# 计算旋转后的向量
rotated_vector = (vector * cos_theta +
cross_product * sin_theta +
axis * dot_product * (1 - cos_theta))
return rotated_vector
def calculate_rotation_angle(v1, v2, axis):
"""
计算从向量 v1 到向量 v2 绕给定轴的逆时针旋转角度
参数:
v1 - 初始向量,形状为 (3,)
v2 - 旋转后的向量,形状为 (3,)
axis - 旋转轴,形状为 (3,)
返回:
旋转角度(弧度),范围 (-pi, pi]
"""
# 确保输入是 numpy 数组
v1 = np.array(v1)
v2 = np.array(v2)
axis = np.array(axis)
# 计算单位轴向量
axis = axis / np.linalg.norm(axis)
# 计算点积
dot_product = np.dot(v1, v2)
# 计算叉积
cross_product = np.cross(v1, v2)
# 计算叉积在旋转轴上的投影长度
projection_length = np.dot(cross_product, axis)
# 计算向量的范数
norm_v1 = np.linalg.norm(v1)
norm_v2 = np.linalg.norm(v2)
# 计算角度的余弦值和正弦值
cos_theta = dot_product / (norm_v1 * norm_v2)
sin_theta = projection_length / (norm_v1 * norm_v2)
# 使用 arctan2 计算角度
angle = np.arctan2(sin_theta, cos_theta)
return angle
def map_2d_to_3d(origin, x_axis, y_axis, point):
u, v = point
return origin + u * x_axis + v * y_axis
def map_3d_to_2d(origin, x_axis, y_axis, point_3d):
"""
将三维空间中的点转换为二维平面上的点
参数:
origin - 原点坐标 (Ox, Oy, Oz),形状为 (3,)
x_axis - X轴向量 (Xx, Xy, Xz),形状为 (3,)
y_axis - Y轴向量 (Yx, Yy, Yz),形状为 (3,)
point_3d - 三维空间中的点 (Px, Py, Pz),形状为 (3,)
返回:
二维平面上的点 (u, v),形状为 (2,)
"""
# 确保输入是 numpy 数组
origin = np.array(origin)
x_axis = np.array(x_axis)
y_axis = np.array(y_axis)
point_3d = np.array(point_3d)
# 构建矩阵 A 和向量 b
A = np.vstack([x_axis, y_axis]).T
b = point_3d - origin
# 求解线性方程组 Ax = b
uv = np.linalg.lstsq(A, b, rcond=None)[0]
return uv
def unit_vector(vector):
"""
计算给定向量的单位向量
参数:
vector - 输入向量,形状为 (n,)
返回:
单位向量,形状为 (n,)
"""
# 计算向量的范数
norm = np.linalg.norm(vector)
if norm == 0:
raise ValueError("零向量没有单位向量")
# 计算单位向量
unit_vector = vector / norm
return unit_vector
def find_n_from_x_and_y(x, y):
"""
Given vectors x and y, find a vector n such that y = n × x.
Assumes that n is orthogonal to x.
Parameters:
x (numpy array): The vector x.
y (numpy array): The vector y.
Returns:
numpy array: The vector n.
"""
# Step 1: Compute the cross product of x and y to get n'
n_prime = np.cross(x, y)
# Step 2: Normalize n' to get the unit vector
n_prime_unit = n_prime / np.linalg.norm(n_prime)
# Step 3: Determine the correct sign of n_prime_unit
# To ensure y = n × x, we should check if the direction is correct
if np.allclose(np.cross(n_prime_unit, x), y):
n = n_prime_unit
else:
n = -n_prime_unit
return n
def angle_from_vector_to_x(vec):
"""computer the angle (0~2pi) between a unit vector and positive x axis"""
angle = 0.0
# 2 | 1
# -------
# 3 | 4
if vec[0] >= 0:
if vec[1] >= 0:
# Qadrant 1
angle = math.asin(vec[1])
else:
# Qadrant 4
angle = 2.0 * math.pi - math.asin(-vec[1])
else:
if vec[1] >= 0:
# Qadrant 2
angle = math.pi - math.asin(vec[1])
else:
# Qadrant 3
angle = math.pi + math.asin(-vec[1])
return angle
def cartesian2polar(vec, with_radius=False):
"""convert a vector in cartesian coordinates to polar(spherical) coordinates"""
vec = vec.round(6)
norm = np.linalg.norm(vec)
theta = np.arccos(vec[2] / norm) # (0, pi)
phi = np.arctan(vec[1] / (vec[0] + 1e-15)) # (-pi, pi) # FIXME: -0.0 cannot be identified here
if not with_radius:
return np.array([theta, phi])
else:
return np.array([theta, phi, norm])
def polar2cartesian(vec):
"""convert a vector in polar(spherical) coordinates to cartesian coordinates"""
r = 1 if len(vec) == 2 else vec[2]
theta, phi = vec[0], vec[1]
x = r * np.sin(theta) * np.cos(phi)
y = r * np.sin(theta) * np.sin(phi)
z = r * np.cos(theta)
return np.array([x, y, z])
def rotate_by_x(vec, theta):
mat = np.array([[1, 0, 0],
[0, np.cos(theta), -np.sin(theta)],
[0, np.sin(theta), np.cos(theta)]])
return np.dot(mat, vec)
def rotate_by_y(vec, theta):
mat = np.array([[np.cos(theta), 0, np.sin(theta)],
[0, 1, 0],
[-np.sin(theta), 0, np.cos(theta)]])
return np.dot(mat, vec)
def rotate_by_z(vec, phi):
mat = np.array([[np.cos(phi), -np.sin(phi), 0],
[np.sin(phi), np.cos(phi), 0],
[0, 0, 1]])
return np.dot(mat, vec)
def polar_parameterization(normal_3d, x_axis_3d):
"""represent a coordinate system by its rotation from the standard 3D coordinate system
Args:
normal_3d (np.array): unit vector for normal direction (z-axis)
x_axis_3d (np.array): unit vector for x-axis
Returns:
theta, phi, gamma: axis-angle rotation
"""
normal_polar = cartesian2polar(normal_3d)
theta = normal_polar[0]
phi = normal_polar[1]
ref_x = rotate_by_z(rotate_by_y(np.array([1, 0, 0]), theta), phi)
gamma = np.arccos(np.dot(x_axis_3d, ref_x).round(6))
if np.dot(np.cross(ref_x, x_axis_3d), normal_3d) < 0:
gamma = -gamma
return theta, phi, gamma
def polar_parameterization_inverse(theta, phi, gamma):
"""build a coordinate system by the given rotation from the standard 3D coordinate system"""
normal_3d = polar2cartesian([theta, phi])
ref_x = rotate_by_z(rotate_by_y(np.array([1, 0, 0]), theta), phi)
ref_y = np.cross(normal_3d, ref_x)
x_axis_3d = ref_x * np.cos(gamma) + ref_y * np.sin(gamma)
return normal_3d, x_axis_3d